Rules of Thumbs and Tips for Normalization, Version 8 (2019)
Dr. Yüe “Jeff” Zhang, July 29, 2019
We will use the following relational schema to demonstrate the points in this document:

Given the following functional dependencies (count the # of functional dependencies – 4 right?):

We will have the normalization results as follows:

2NF – No partial dependency (count the # of functional dependencies – still 4 right?):

	

	

3NF – No transitive dependency (count the # of functional dependencies – still 4 right?):

	

	
	

Show referential integrity:

	

	

	

	Section 0: ERD to relational schema
	

	1. 01:

a) The number of entities correspond to the number of relations (tables) at the COMPLETION of normalization;

b) the number of relationships correspond to the number of referential integrity constraints (the “curvy arrows” [doesn’t have to be curvy]).
	

	2. 02:

a) The entity on the ONE-side will correspond to a relation (table) having a curvy arrow coming IN to its primary key from the foreign key in the relation (table) on the MANY-side;

b) The entity on the MANY-side will correspond to a relation (table) having a curvy arrow going OUT from the foreign key in the relation (table) to the primary key on the ONE-side.
c) Note: Arrow connects FK to PK – not (arbitrarily) any columns can be connected! (- added Summer 2019)
	

	Section 1: “Super Rules” (and simple rules)
	This col references Ex on P.1

	Rule 0: Disambiguation - Note there are two types of arrows:

a) Arrows withIN a functional dependency in 1NF, and arrows withIN a relation after decomposition in normalization;

b) Arrows between relations after decomposition.

c) Arrows type a (arrows within, referred to as “func dep arrows”) indicate logical determination: the key determines non-key fields, pointing from the key to non-key fields; while

d) Arrows type b (arrows between, referred to as “reference arrows”) are referential integrity constraints: pointing from FKey in the relation on M-side to PKey in the relation on the 1-side.

	1. All “boxes” in a func dep represented in a graphical schema go into one relation/table. Corresponding to an ERD, a func dep exists for, and covers an entity (regular, or associative).
	If a field is included in 2 func deps, when in 3NF, this field will be PK in one relation/table and FK in another

	2. All boxes must have either incoming func dep arrow(s) or outgoing func dep arrow(s):

a) if a field is a key field, it has only outgoing func dep arrow(s) – if there are 2 outgoing arrows, there is a PD;

b) if a field is a non-key, it must have an incoming arrow (if also outgoing arrow, it’s the determinant in a TD)
	a) In 2NF: A and B; in 3NF: A, B, C

b) Shown in 2NF: fields C to J

	3. “Conservation of func deps and attributes”:

a) The number of func deps in the original 1NF must equal the number of relations/tables in 3NF;

b) The total number of attributes in the original 1NF must equal the total number of attributes in 3NF.
	Original 1NF: 4 func deps, 10 attributes
Final 3NF: 4 relations/tables, w a total of 10 attributes (PK-FK counted as one)

	4. Two tables will NOT point to (reference) each other (because they cannot be simultaneously on the 1-side AND M-side of a relationship).
	“Cross-referencing” - Table X points to Table Y and then Y points back to X is WRONG!

	5. Two tables will NOT have two arrows point in the same direction.
	

	Section 2: Operational Rules for Normalization
	

	a) a func dep involves the COMPLETE primary key (single-field or composite) is a FD;

b) one that only involves a PART of the primary key is PD;

c) one that does NOT involve any part of the primary key is TD.

d) (Plus: ALWAYS underline PK, which can help you to ID the FD, and easier to ID PDs)
	In ANY relation, there MUST be one, and only one, FD. Doesn’t have to have PD or TD

	1. Arrows and dependency types

(a) Two outgoing func dep arrows mean composite key;
(b) an incoming and an out-going arrow at the same attribute means transitive dependency. (Ref: 1c in the last box)
	In the Ex, 1NF:
A and B is scenario (a);
C is scenario (b)

	2. Partial dependency PD:

a. PD: when there is a composite key, *IF* this func dep has ONE PART of the composite key as the determinant of some other non-key attribute(s).

b. PDs only exist when an arrow goes out from an attribute which is PART OF A composite key
	In the Ex (1NF): “red 2” and “blue 3” before they broke out from the original table

If there’s no composite key, there’s no PD

	3. Transitive dep: *IF* a non-key attribute (not the PK, nor part of the composite key, but totally non-key) determines other attribute(s). In graphical schema, this is when there’s an incoming and an outgoing arrow into and from the same box.

	C is the example, which is non-key field (also not part of the key), yet it determines D to F

C has an incoming and an outgoing arrow in 1NF

	4. Identify FKs: In the 1NF, these attributes either have an incoming and an outgoing arrow (TD), or are part of a composite key (PD) that has an outgoing arrow OF ITS OWN (not as part of FD).
	C is the example

A and B are the examples

	5. Scenarios for a field to appear in multiple tables:

a. One attribute may appear in –

i. one table (ALL non-key attributes),
ii. two tables (as PK in one and as FK in another),
iii. three tables (as PK in one, as FK in two),
iv. … HOWEVER,

b. A non-key attribute will NEVER appear in two tables as non-key;
c. A key will NOT appear in two tables as (full) key (part of composite key is allowed). IF so, those 2 tables should merge.
d. From b and c: The SAME TWO attributes will NOT appear in the SAME TWO TABLES.
6. In the func dep in 1NF , all the fields covered by the same func dep WILL GO TO THE SAME (smaller) RELATION at the end – they belong in that same table;

7. More about TD:

A field cannot be in TD and PD simultaneously (Think: if you are in TD, you are determined by a NON-key field – This conflicts with the condition for PD right?)
	In 3NF: A in 1 and 2, B in 1 and 3, C in 3 and 4 – all appear “PK in one table and FK in the other”
(a non-key field in 2 tables is exactly what normalization will remove: data redundancy
“Same logic go to same table”

Equivalence of terms: attribute, field, column

These rules/tips can be used for “self-grading”

1

4

Abbreviations and references:

Func dep = functional dependency

The Ex: The example here on this page

FD: Full; PD: Partial; TD: Transitive

J

I

H

G

F

E

D

C

B

A

3

2

1

J

I

B

A

4

A

H

G

2

3

F

E

D

C

B

1

J

I

B

A

4

3

A

H

G

2

C

B

F

E

D

C

Number of functional dependency stays the same

J

I

B

A

A

H

G

C

B

F

E

D

C

…

Kc

Kb

Kc

Ka

…

…

Ka

ENT_B

3 entities

2 relatnshp

ENT_C

ENT_A

Mistakes made by 10% students in E1

Arrow w/in

vs Arrow between

Link FK w PK, not arbitrarily any fields

1

